Impact of revascularization strategies in femoropopliteal lesions – Results from the REVIVE study

Florian K. Enzmann, Serdar Farhan, Patrick Bjorkman, Haroon Kamran, Zhongjie Zhang, Samantha Sartori, Birgit Vogel, Arthur Tarricone, Klaus Linni, Maarit Venermo, Daphne van der Veen, Herve Moussalli, Roxana Mehran, Michel M.P.J. Reijnen, Marc Bosiers, and Prakash Krishnan

The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA;
Department of Vascular Surgery, Medical University of Innsbruck, Innsbruck, Austria;
Department of Cardiac, Vascular Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland;
Department of Cardiac, Vascular and Endovascular Surgery, Paracelsus Medical University, Salzburg, Austria;
Department of Surgery, Rijnstate, Arnhem, the Netherlands;
Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, the Netherlands;
A.Z. Sint-Blasius Hospital, Dendermonde, Belgium
Disclosure

Speaker name: Serdar Farhan

I have the following potential conflicts of interest to report:

☐ Consulting
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☒ I do not have any potential conflict of interest
Introduction

• REVIVE study:

 Literature research PUBMED, EMBASE and websites (clinicaltrials.gov, tctmd.com, leipzig-interventional-course.com)

 Search for RCTs comparing endovascular intervention with use of scaffolds vs. vascular bypass surgery

 6 RCTs were identified

 Principal investigators of 5 RCTs agreed to pool the data

Farhan et al. J Am Coll Cardiol 2023;81:358–370
Revascularization strategies for femoropopliteal artery lesions range from endovascular techniques using drug-eluting stents (DES) and non-DES to surgical bypass utilizing polytetrafluorethylene (PTFE) as well as autologous vein grafts (AVG). None of the existing studies were adequately powered to compare these techniques.
Study endpoints and groups

• Primary endpoint
 • Major adverse limb events (MALE): Composite of all-cause death, major amputation or target limb revascularization

• Secondary endpoints
 • included amputation free survival (AFS), target-limb revascularization (TLR) and primary patency.

• Patient groups:
 • Autologous vein graft
 • Prosthetic graft (PTFE/dacron)
 • DES
 • Non-DES (bare metal stents and covered stents).
Baseline and procedural characteristics

AVG: autologous vein graft; **PTFE**: polytetrafluoroethylene; **DES**: drug-eluting stent, **BMS**: bare metal stent, **CFA**: common femoral artery

Lesion type

<table>
<thead>
<tr>
<th>Category</th>
<th>GRAF N= 148 (23.2%)</th>
<th>PTFE/Dacron N= 166 (26.0%)</th>
<th>DES N= 136 (21.3%)</th>
<th>Non-DES N= 189 (29.6%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stenotic</td>
<td>21 (14.3%)</td>
<td>6 (3.6%)</td>
<td>9 (6.6%)</td>
<td>36 (19.4%)</td>
<td><.001</td>
</tr>
<tr>
<td>Occlusive</td>
<td>126 (85.7%)</td>
<td>159 (96.4%)</td>
<td>127 (93.4%)</td>
<td>150 (80.6%)</td>
<td></td>
</tr>
</tbody>
</table>

Lesion length, cm

<table>
<thead>
<tr>
<th>Category</th>
<th>GRAF N= 148</th>
<th>PTFE/Dacron N= 166</th>
<th>DES N= 136</th>
<th>Non-DES N= 189</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>26.4±7.0</td>
<td>22.2±8.9</td>
<td>22.3±7.6</td>
<td>23.5±8.5</td>
<td><.001</td>
</tr>
</tbody>
</table>

Angiographic runoff

<table>
<thead>
<tr>
<th>Category</th>
<th>GRAF N= 148</th>
<th>PTFE/Dacron N= 166</th>
<th>DES N= 136</th>
<th>Non-DES N= 189</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 vessel</td>
<td>3 (2.1%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>3 (1.7%)</td>
<td>0.152</td>
</tr>
<tr>
<td>1 vessel</td>
<td>24 (17.1%)</td>
<td>6 (11.8%)</td>
<td>7 (30.4%)</td>
<td>39 (21.7%)</td>
<td></td>
</tr>
<tr>
<td>2 vessels</td>
<td>65 (46.4%)</td>
<td>16 (31.4%)</td>
<td>8 (34.8%)</td>
<td>67 (37.2%)</td>
<td></td>
</tr>
<tr>
<td>3 vessels</td>
<td>48 (34.3%)</td>
<td>29 (56.9%)</td>
<td>8 (34.8%)</td>
<td>71 (39.4%)</td>
<td></td>
</tr>
</tbody>
</table>

Concomitant CFA treatment

<table>
<thead>
<tr>
<th>Category</th>
<th>GRAF N= 148</th>
<th>PTFE/Dacron N= 166</th>
<th>DES N= 136</th>
<th>Non-DES N= 189</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 (31.8%)</td>
<td>3 (1.8%)</td>
<td>0 (0.0%)</td>
<td>24 (12.7%)</td>
<td><.001</td>
<td></td>
</tr>
</tbody>
</table>

Technical failure

<table>
<thead>
<tr>
<th>Category</th>
<th>GRAF N= 148</th>
<th>PTFE/Dacron N= 166</th>
<th>DES N= 136</th>
<th>Non-DES N= 189</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>2 (1.5%)</td>
<td>21 (11.1%)</td>
<td><.001</td>
<td></td>
</tr>
</tbody>
</table>

Length of hospital stay, in days

<table>
<thead>
<tr>
<th>Category</th>
<th>GRAF N= 148</th>
<th>PTFE/Dacron N= 166</th>
<th>DES N= 136</th>
<th>Non-DES N= 189</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0±4.3</td>
<td>6.8±5.4</td>
<td>2.9±1.2</td>
<td>3.3±1.3</td>
<td><.001</td>
<td></td>
</tr>
</tbody>
</table>

Medications at discharge

<table>
<thead>
<tr>
<th>Category</th>
<th>GRAF N= 148</th>
<th>PTFE/Dacron N= 166</th>
<th>DES N= 136</th>
<th>Non-DES N= 189</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anticoagulants</td>
<td>43 (29.1%)</td>
<td>18 (30.5%)</td>
<td>3 (13.6%)</td>
<td>38 (20.1%)</td>
<td>0.102</td>
</tr>
<tr>
<td>Aspirin</td>
<td>115 (78.2%)</td>
<td>51 (86.4%)</td>
<td>19 (86.4%)</td>
<td>150 (80.2%)</td>
<td>0.560</td>
</tr>
<tr>
<td>P2y12 inhibitor</td>
<td>34 (23.3%)</td>
<td>21 (35.6%)</td>
<td>20 (90.9%)</td>
<td>150 (80.2%)</td>
<td><.001</td>
</tr>
<tr>
<td>Lipid lowering</td>
<td>111 (75.5%)</td>
<td>27 (71.1%)</td>
<td>11 (47.8%)</td>
<td>127 (77.9%)</td>
<td>0.019</td>
</tr>
</tbody>
</table>

Insulin use

<table>
<thead>
<tr>
<th>Category</th>
<th>GRAF N= 148</th>
<th>PTFE/Dacron N= 166</th>
<th>DES N= 136</th>
<th>Non-DES N= 189</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 (13.2%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>8 (7.8%)</td>
<td>0.261</td>
<td></td>
</tr>
</tbody>
</table>

Lesion type

Stenotic

<table>
<thead>
<tr>
<th>Category</th>
<th>GRAF N= 148</th>
<th>PTFE/Dacron N= 166</th>
<th>DES N= 136</th>
<th>Non-DES N= 189</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 (14.3%)</td>
<td>6 (3.6%)</td>
<td>9 (6.6%)</td>
<td>36 (19.4%)</td>
<td><.001</td>
<td></td>
</tr>
</tbody>
</table>

Occlusive

<table>
<thead>
<tr>
<th>Category</th>
<th>GRAF N= 148</th>
<th>PTFE/Dacron N= 166</th>
<th>DES N= 136</th>
<th>Non-DES N= 189</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>126 (85.7%)</td>
<td>159 (96.4%)</td>
<td>127 (93.4%)</td>
<td>150 (80.6%)</td>
<td><.001</td>
<td></td>
</tr>
</tbody>
</table>

Lesion length, cm

<table>
<thead>
<tr>
<th>Category</th>
<th>GRAF N= 148</th>
<th>PTFE/Dacron N= 166</th>
<th>DES N= 136</th>
<th>Non-DES N= 189</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>26.4±7.0</td>
<td>22.2±8.9</td>
<td>22.3±7.6</td>
<td>23.5±8.5</td>
<td><.001</td>
</tr>
</tbody>
</table>

Angiographic runoff

- **0 vessel**: 3 (2.1%)
- **1 vessel**: 24 (17.1%)
- **2 vessels**: 65 (46.4%)
- **3 vessels**: 48 (34.3%)

Concomitant CFA treatment

- **47 (31.8%)**: 3 (1.8%)
- **0 (0.0%)**: 24 (12.7%)

Technical failure

- **0 (0.0%)**: 0 (0.0%)
- **2 (1.5%)**: 21 (11.1%)

Length of hospital stay, in days

- **8.0±4.3**: 6.8±5.4
- **2.9±1.2**: 3.3±1.3

Medications at discharge

- **Anticoagulants**: 43 (29.1%)
- **Aspirin**: 115 (78.2%)
- **P2y12 inhibitor**: 34 (23.3%)
- **Lipid lowering**: 111 (75.5%)
- **Insulin use**: 14 (13.2%)

Presentation

- **Critical limb ischemia or acute limb ischemia**
- **72 (48.6%)**: 55 (33.1%)
- **39 (28.7%)**: 81 (42.9%)

Interruption of claudication

- **76 (51.4%)**: 111 (66.9%)
- **97 (71.3%)**: 108 (57.1%)

TASC classification

- **<.001**

B

- **2 (1.4%)**: 15 (9.2%)
- **9 (6.6%)**: 19 (10.2%)

C

- **52 (35.4%)**: 19 (11.7%)
- **18 (13.2%)**: 63 (33.9%)

D

- **93 (63.3%)**: 129 (79.1%)
- **109 (80.1%)**: 104 (55.9%)
Results: Primary endpoint MALE

Death, amputation, or re-intervention at 24m

Log-rank P value = 0.6122

Cumulative incidence (%) vs Days after randomization

Number at risk
- GRAF: 148, 120, 103, 93, 79
- PTFE: 166, 138, 118, 97, 84
- DES: 133, 122, 92, 73, 63
- Non-DES: 168, 136, 107, 99, 80

Legend:
- Red: GRAF
- Blue: PTFE
- Green: DES
- Orange: Non-DES
Results: AFS
Results: TLR

TLR

<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>50 (34.8%)</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>PTFE/Dacron</td>
<td>42 (27.8%)</td>
<td>0.75 (0.50 - 1.13)</td>
<td>0.164</td>
</tr>
<tr>
<td>DES</td>
<td>31 (26.8%)</td>
<td>0.66 (0.42 - 1.04)</td>
<td>0.072</td>
</tr>
<tr>
<td>Non-DES</td>
<td>66 (38.0%)</td>
<td>1.11 (0.77 - 1.60)</td>
<td>0.578</td>
</tr>
</tbody>
</table>

Reintervention at 24m

![Graph showing cumulative incidence of reintervention over time](image)

- Log-rank P-value = 0.0476

Number at risk

- GRAF: 148, 120, 103, 93, 80
- PTFE: 165, 138, 116, 97, 84
- DES: 135, 124, 96, 76, 65
- Non-DES: 106, 147, 116, 105, 85

Days after randomization

- Days range from 0 to 720
Results: Primary Patency

Loss of primary patency

<table>
<thead>
<tr>
<th>Group</th>
<th>N (%)</th>
<th>HR (95% CI)</th>
<th>P-value</th>
<th>aHR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>64 (44.5%)</td>
<td>Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTFE/Dacron</td>
<td>49 (33.2%)</td>
<td>0.65 (0.45 - 0.94)</td>
<td>0.023</td>
<td>0.54 (0.36 - 0.81)</td>
<td>0.003</td>
</tr>
<tr>
<td>DES</td>
<td>45 (39.0%)</td>
<td>0.72 (0.49 - 1.05)</td>
<td>0.092</td>
<td>0.58 (0.37 - 0.89)</td>
<td>0.012</td>
</tr>
<tr>
<td>Non-DES</td>
<td>97 (55.9%)</td>
<td>1.40 (1.02 - 1.92)</td>
<td>0.037</td>
<td>1.28 (0.93 - 1.77)</td>
<td>0.135</td>
</tr>
</tbody>
</table>

AVG: autologous vein graft; PTFE: polytetrafluoroethylene; DES: drug eluting stent.

Model adjusted for CKD, intermittent claudication, TASC D, lesion type occlusive, lesion length, and concomitant CFA treatment.
Conclusion:

• Endovascular intervention with DES and non-DES is associated with similar risk of MALE, compared to AVG or prosthetic grafts.

• Secondary endpoints:
 • Utilization of prosthetic grafts or DES was associated with highest primary patency followed by AVG, and non-DES.
 • EVT with DES was associated with the lowest risk for TLR compared to AVG and non-DES implantation.
 • Unmeasured confounders might have contributed to these findings.

• The importance of medical therapy must be emphasized.