Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?
Disclosure

Speaker name:
Jorge Fernández Noya

I have the following potential conflicts of interest to report:

☑ Consulting/Proctor: Gore, Medtronic, Terumo, Artivion, Lombard, Logimed
☐ Employment in industry
☐ Stockholder of a healthcare company
☐ Owner of a healthcare company
☐ Other(s)

☐ I do not have any potential conflict of interest
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

Yes, conformability can have an impact on the outcomes of endovascular repair of abdominal aortic aneurysms (AAA) with angulated infrarenal necks. The infrarenal neck refers to the portion of the aorta just below the renal arteries where the aneurysm begins.

Conformability in this context refers to the ability of the endovascular graft (stent-graft) to adapt and conform to the shape and angulation of the patient's aortic anatomy. In cases where the infrarenal neck of the aneurysm is angulated, meaning it deviates from a straight or perpendicular orientation, the graft must be able to fit properly to ensure successful deployment and long-term durability.

If the endovascular graft lacks sufficient conformability, it may result in various issues:

1. Partial seal: The graft may fail to create a complete seal between the healthy aorta and the aneurysm sac. This can lead to persistent blood flow within the aneurysm and increase the risk of future complications, such as rupture.
2. Endoleak: Inadequate conformability can contribute to the development of endoleaks, which are persistent flow channels within the aneurysm sac despite graft placement. Endoleaks can cause continued expansion of the aneurysm or lead to other complications.
3. Graft migration: A lack of conformability may increase the likelihood of graft migration, where the stent-graft moves from its intended position, potentially compromising its effectiveness and risking rupture.

Therefore, achieving adequate conformability is crucial for successful endovascular repair and minimizing complications.
Aortic anatomy and EVAR results

<table>
<thead>
<tr>
<th>Study</th>
<th>n</th>
<th>Complication</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schanzer A, Greenberg RK
Circulation Jun 2011</td>
<td>10228 patients US multicentric data</td>
<td>41% patients with sac enlargement 5 years FU</td>
<td>ONLY 42% PATIENTS ANATOMY COMPLIED WITH IFU
Aortic neck angle >60º
Aortic neck diameter >28mm
Common iliac diameter >20 mm.
Independent risk factor during FU period</td>
</tr>
<tr>
<td>Wyss TR, Greenhald RM
J Vasc Surg 2011 Oct</td>
<td>217 patients US multicentric data</td>
<td>53 patients had graft related complication at FU Mean 3.6y</td>
<td>ITT had the strongest relation (hazard ratio) with complications AFTER EVAR.
Neck angulation, and calcification are independent risk factors</td>
</tr>
</tbody>
</table>
Migration and type I endoleaks

1. Short neck
2. Angulated proximal neck
3. Shape: reverse taper
4. Thrombus / calcification

Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

Maximize sealing zone!!!!!!!!

Improving proximal deployment accuracy
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

Long-term outcomes of standard endovascular aneurysm repair in patients with severe neck angulation

Nelson F. G. Oliveira, MD, a,b Frederico Bastos Goncalves, MD, PhD, a,c Sanne E. Hoeks, PhD, d Marie Josee van Rijn, MD, PhD, e Klaas Uittee, PhD, a José Pedro Pinto, MD, a,c Sander Ten Raa, MD, PhD, a Joost A. van Herwaarden, MD, PhD, f Jean-Paul P. M. de Vries, MD, PhD, g and Hence J. M. Verhagen, MD, PhD, a Rotterdam, Utrecht, and Nieuwegein, The Netherlands; and Azores, Lisbon, and Porto, Portugal

Endovascular aneurysm repair in 45 patients with angulated necks and in 65 controls resulted in similar rates of neck-related reinterventions and survival after 7 years but higher rates of type I endoleaks in the angulated neck group.
Preoperative Neck Angulation is Associated with Aneurysm Sac Growth Due to Persistent Type la Endoleak after Endovascular Abdominal Aortic Aneurysm Repair

Yoshimasa Selke, MD, Tetsuya Fukuda, MD, PhD, Koki Yokawa, MD, Yosuke Inoue, MD, Takayuki Shijo, MD, Kyokun Uehara, MD, PhD, Hiroaki Sasaki, MD, PhD, and Hitoshi Matsuda, MD, PhD

Objective: This study aims to determine how instructions for use affect the occurrence of aneurysm sac growth and endoleaks after an endovascular aneurysm repair (EVAR).

Materials and Methods: We reviewed 302 patients who underwent EVAR for abdominal aortic aneurysm repair from 2007 and 2013, and we were able to trace 263 (74% men, mean age 78±7 years, mean follow-up 48±27 months) for this study.

Results: The study was a single-centered retrospective study to evaluate the incidence of persistent type la endoleaks and freedom from persistent type la endoleaks was significantly higher in the angulated group. The angle of the proximal LZ was identified as an independent risk factor for sac growth post-EVAR. The incidence of persistent type la endoleaks was significantly higher in the angulated group.
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

Pre-operative Aortic Neck Characteristics and Post-operative Sealing Zone as Predictors of Type 1a Endoleak and Migration After Endovascular Aneurysm Repair: A Systematic Review and Meta-Analysis

Ray Zuidema 1,2, Claire van der Rest 3,4, Martijn M. Meeuwen 5, Rita C. Claasen 5, Cédric F. Smits 5, Jean-Paul P.M. de Vries 1

1 Department of Surgery, Division of Vascular Surgery, University Medical Centre Groningen, Groningen, the Netherlands
2 Department of Surgery, Division of Trauma Surgery, University Medical Centre Groningen, Groningen, the Netherlands
3 Department of Surgery, Academic Medical Center, Amsterdam, the Netherlands

WHAT THIS PAPER ADDS

Patients with hostile infrarenal neck anatomy are believed to have an increased risk of developing type 1a endoleak and migration after endovascular aneurysm repair (EVAR). However, previous reviews have not addressed single pre-operative aortic neck characteristics. This systematic review provides an updated overview of aortic neck characteristics and the post-operative real achieved sealing zone of type 1a endoleak and migration. Pre-operative aortic neck diameter, angulation, length and conformity were associated with the development of type 1a endoleak or migration. Post-operative sealing zone might be an important addition during follow-up.

Objective: Establishing the risk factors of type 1a endoleak and migration after EVAR.

Methods: Systematic review and meta-analysis of pre-operative aortic neck characteristics and post-operative sealing zones of type 1a endoleak and migration. Risk factors were identified using the Mantel-Haenszel method.

Results:

- **Angulated:**
 - Outcomes of type 1a endoleak (six studies: OR 2.64, 95% CI 1.44 — 4.82).
 - Outcomes of migration (seven studies: OR 4.30, 95% CI 2.12 — 8.69).

- **Conformability**:
 - Outcomes of type 1a endoleak (seven studies: OR 5.56, 95% CI 2.19 — 14.11).
 - Outcomes of migration (seven studies: OR 2.25, 95% CI 1.06 — 4.77).

Conclusion:

There seems to be some consistent evidence that aortic neck diameter, angulation, and length are associated with the development of type 1a endoleak or migration. Real achieved sealing zone might be an important addition during follow-up. However, a small number of studies, with serious limitations, could be included, and there was considerable variability in reporting patients and outcomes. A proposal for standardisation of aortic and EVAR data in future studies is provided.

Figure: Meta-analyses of angulation and (A) type 1a endoleak; (B) type 1a endoleak; (C) type 1a endoleak; and (D) neck migration after endovascular aortic repair (EVAR). CI = confidence interval; M-H = Mantel–Haenszel; OR = odds ratio.
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

Influence of severe neck angulation on hemodynamic and clinical outcomes following endovascular aneurysm repair: a hemodynamic analysis and a retrospective cohort study

Yang Liu1, Ming Qiong2, Jichun Zhao3, Bin Huang4, Yi Yang1, Tinghui Zheng3, Ding Yuan1

1Department of Vascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
2Department of Applied Mechanics, Sichuan University, Chengdu, Sichuan 610065, China

Abstract

Background: For patients with angulated infrarenal necks, it remains controversial whether stenting or bare stent repair could improve the outcomes of endovascularrepair. This study aimed to explore the influence of SNA on hemodynamic and clinical outcomes.

Methods: In this hemodynamic study, nine non-severe neck angulation (nSNA) and 16 SNA idealized models were constructed, and proximal neck angles were significantly associated with the magnitude of drag force. A Cox regression model was performed to determine whether SNA associated with clinical outcomes. The primary outcome was per-cutaneousteleendoleak (aTIAEL), distal endoleak (dTIAEL), primary treatment success (PTS) rates, and secondary intervention rates. The subgroup analysis was performed to explore the influence of different SNA on hemodynamic and clinical outcomes.

Results: We found a significant difference in drag force between SNA and nSNA models (7.016 ± 2.579 N vs. 4.283 ± 1.460 N, P < 0.05, 95% confidence interval [CI] 0.907-0.994; F = 0.002, P = 0.001; β: 95% CI −0.019 to 0.007; P = 0.343). The risk of aTIAEL was associated with a significant risk of adverse clinical outcomes. In addition, the subgroup analysis suggested a significant association of severe neck angulation with adverse limb event (Proximal migration, 1.23.0 mm; 95% CI 1.22-2.63) and re-intervention rate. Interestingly, no noticeble difference was observed in the rate of primary treatment success. The conclusions of this study also demonstrated that severe neck angulation may be a poor prognostic indicator for overall/aneurysm-related mortality and rupture in the medium term after EVAR. Therefore, patients require close surveillance.

Keywords: Severe neck angulation; Aneurysm; Prognostic role; Endovascular Aneurysm Repair; Medial;

Conclusion: Severe neck angulation may not be a poor prognostic indicator for overall/aneurysm-related mortality and rupture in the medium term after EVAR but may increase the risk of late type I endoleaks and re-intervention; therefore, patients require close surveillance.

Systematic Review

Prognostic Role of Severe Infrarenal Neck Angulation on Endovascular Aneurysm Repair

Eur J Vasc Endovasc Surg (2021) 62, 409–421

What This Paper Adds

Severe infrarenal aortic neck angulation has been described as a culprit for failure of endovascular aneurysm repair (EVAR), but prognosis studies are limited by small numbers of patients. A systematic review and meta-analysis of 737 patients was conducted. The findings indicate that severe neck angulation may not be a poor prognostic indicator for overall/aneurysm-related mortality and rupture in the medium term after EVAR, but may increase the risk of late type I endoleaks and secondary re-intervention, and therefore patients require close surveillance during follow-up.

Objective: To investigate whether patients with severe infrarenal aortic neck angulation had a worse outcome than those without severe angulation after endovascular repair.

Data sources: The HDBS Healthcare Database for Health and Care Excellence

Review methods: This study was a systematic review and meta-analysis.

Conclusion: Severe neck angulation may not be a poor prognostic indicator for overall/aneurysm-related mortality and rupture in the medium term after EVAR but may increase the risk of late type I endoleaks and re-intervention; therefore, patients require close surveillance.
Does conformationality have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

Maximize sealing zone!!!!!!!

- Patient selection
- Precise Sizing & Planning
- Choose the correct device

- Techniques:
 - Sheath/ Graft deflection
 - Endowedge
 - Extra cuff (Planned)
 - Endoanchors
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

Maximize sealing zone!!!!!!!
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

Maximize sealing zone!!!!!!!
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

Try to Stay on Label.

A device specifically designed to perform adequately across the spectrum of potential anatomic presentations for infra-renal EVAR are needed.

Indications (IFU)

<table>
<thead>
<tr>
<th>Country</th>
<th>Regulatory Agency</th>
<th>Year Approved</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe</td>
<td>CE</td>
<td>2018</td>
<td>≥10-mm PLZ/ 0-60° Angulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥15-mm PLZ/ 60-90° Angulation</td>
</tr>
<tr>
<td>United States</td>
<td>FDA</td>
<td>2021</td>
<td>≥15-mm PLZ/ 0-60° Angulation</td>
</tr>
</tbody>
</table>
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

GORE® ACTIVE CONTROL System

Controlled conformability for each patient’s unique anatomy

Conformable stent graft
- Helps achieve aortic wall apposition.
- Adapts closely to the anatomy.
- Conforms to proximal neck angles up to 90°.

Enhanced device positioning
- Ability to reconstraining proximal end for refined positioning.
- Sealing ability in short (≥ 10 mm) necks.
- Initial trunk deployment at ~70% diameter to improve ease of repositioning in challenging anatomy.

Optional angulation control
- Aids in orthogonal placement to optimize seal within the flow lumen.
- Controlled delivery allows for angulation at two stages.
GORE® EXCLUDER® Conformable AAA Endoprosthesis

New Features

<table>
<thead>
<tr>
<th>Modifications of the Trunk-Ipsilateral Leg</th>
<th>GORE® EXCLUDER® Device</th>
<th>GORE® EXCLUDER® Conformable Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paired anchors</td>
<td>Individual anchors</td>
<td></td>
</tr>
<tr>
<td>Continuous sinusoidal design</td>
<td>Individual stent rows</td>
<td></td>
</tr>
<tr>
<td>Connecting wire</td>
<td>Absence of connecting wire</td>
<td></td>
</tr>
<tr>
<td>19–32 mm treatment range</td>
<td>16–32 mm treatment range</td>
<td></td>
</tr>
<tr>
<td>4 / 5 / 6 cm trunk body</td>
<td>5.5 / 6.5 cm trunk body</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modifications of the Aortic Extender</th>
<th>GORE® EXCLUDER® Device</th>
<th>GORE® EXCLUDER® Conformable Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous sinusoidal design</td>
<td>Individual stent rows</td>
<td></td>
</tr>
<tr>
<td>3.3 / 4.5 cm</td>
<td>4.5 cm</td>
<td></td>
</tr>
</tbody>
</table>

Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

GORE® EXCLUDER® Conformable AAA Endoprosthesi

Deployment sequence in highly angulated neck: a different concept
Novel conformable stent-graft repair of abdominal aortic aneurysms with hostile neck anatomy: A single-centre experience

Seong Hoon Lee, Ross Melvin, Stacey Kerr, Lucie Barakova, Alsadair Wilson and Bryce Renwick

Abstract

Objectives: Abdominal aortic aneurysms (AAAs) demonstrate increased perioperative risk and mortality. Endovascular aneurysm repair (EVAR) and are high risk for endoleak formation. A novel conformable aortic stent-graft repair (C-ESTAR) offers the potential to lower the rate of endoleak.

Methods: From March 2019 to September 2021, 24 patients with AAA (neck diameter ≤ 15 mm, neck angle ≥ 60°) were included. Primary technical success of proximal seal zones was 100%, no conversion to open repair, AAA excluded and patient leaving theatre alive. All patients were alive and clinically stable at 1- and 12-month follow-up. There were no major complications, no deaths, no re-intervention at the 3-month follow-up, and no re-intervention at the 12-month follow-up.

Conclusions: In-hospital and post-operative clinical outcomes of C-ESTAR repair of AAA with HNA are demonstrated. Further research involving larger heterogeneous sample sizes is warranted to determine long-term clinical outcomes.

Vascular

Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

GORE® EXCLUDER® Conformable AAA Endoprosthesis/CLINICAL DATA

- 100% Technical success
- 3 reinterventions (iliac issues)
- 0% Type Ia-III Endoleak
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

Endovascular Treatment of Abdominal Aortic Aneurysm With Severe Angulation of Infrarenal Aortic Neck by Gore Conformable Endograft

CLINICAL DATA

- 25 patients in severe angulated aortic necks
- 0% Type I-III Endoleak
- No reintervention
- Median Follow up 12 months
- 100% Technical success
- Median Follow up 12 months
- 0% Type I-III Endoleak
- No reintervention

GORE® EXCLUDER® Conformable AAA Endoprosthesis/
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

GORE® EXCLUDER® Conformable AAA Endoprosthesis/CLINICAL DATA

Table IV—Postoperative dimensions of the aortic neck, endograft, and aortic aneurysm.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Follow-up 1 (0-6 months)</th>
<th>Follow-up 2 (7-18 months)</th>
<th>Follow-up 3 (19-30 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAL (mm)</td>
<td>21.4 (13.2-27.4)</td>
<td>20.5 (13.5-25.9)</td>
<td>21.9 (10.8-28.8)</td>
</tr>
<tr>
<td>SAL <10 mm</td>
<td>8 (21%)</td>
<td>3 (14%)</td>
<td>2 (5%)</td>
</tr>
<tr>
<td>SAL/neck length ratio</td>
<td>0.9 (0.6-1.4)</td>
<td>1.0 (0.8-1.4)</td>
<td>1.0 (0.6-1.2)</td>
</tr>
<tr>
<td>SFD (mm)</td>
<td>2.4 (0.1-4.7)</td>
<td>2.2 (0.6-4.5)</td>
<td>2.5 (0.8-5.1)</td>
</tr>
<tr>
<td>Endograft expansion (%)</td>
<td>85.8 (81.9-91.1)</td>
<td>90.7 (84.0-95.1)</td>
<td>92.3 (87.0-96.2)</td>
</tr>
<tr>
<td>Tilt (°)</td>
<td>14.3 (7.6-22.9)</td>
<td>15.4 (8.9-24.6)</td>
<td>15.3 (9.0-31.4)</td>
</tr>
<tr>
<td>Infrarenal curvature, m1</td>
<td>44.0 (33.0-71.0)</td>
<td>42.5 (34.0-68.0)</td>
<td>60.0 (35.8-71.5)</td>
</tr>
<tr>
<td>Suprarenal curvature, m2</td>
<td>29.0 (23.6-39.0)</td>
<td>33.5 (23.6-50.3)</td>
<td>38.0 (24.5-47.8)</td>
</tr>
<tr>
<td>AAA diameter (mm)</td>
<td>50.0 (44.8-59.0)</td>
<td>47.0 (38.8-52.5)</td>
<td>43.1 (36.3-60.5)</td>
</tr>
</tbody>
</table>

Continuous data are presented as median (IQR quartile) and categorical data as number (percentage).

- 46 patients
- >60 ° (11>90º)
- 100% Technical success
- Median Follow up 10 months
- 0% Type I-III Endoleak
- No reintervention
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

GORE® EXCLUDER® Conformable AAA Endoprosthesis/CLINICAL DATA

One-year results of the GORE EXCLUDER Conformable AAA Endoprosthesis system in the United States regulatory trial

Robert Rhee, MD,² Gustavo Oderich, MD,³ Sukoo Han, MD,³ Chandler Long, MD,³ Patrick Muck, MD,³ Erin Moore, MD,³ and Jon Matsunuma, MD,³ For the EXCC Investigators, Brooklyn NY; Houston, TX; Los Angeles, CA; Durham, NC; Cincinnati, OH; Jacksonville, FL, and Madison, WI

ABSTRACT

Objective: To report the 1-year clinical outcomes from the GORE EXCLUDER Conformable AAA Endoprosthesis system in the US regulatory trial.

Methods: This is a prospective, multicenter, investigational device exemption (IDE) trial. The study was designed to evaluate the safety and efficacy of the device in patients with abdominal aortic aneurysms (AAA). The primary endpoint was freedom from primary safety and primary efficacy end points at 30 days. The secondary endpoints were freedom from secondary safety and secondary efficacy end points at 12 months.

Results: A total of 80 patients were enrolled and treated with the GORE EXCLUDER Conformable AAA Endoprosthesis system. The mean age of patients was 66 years (range, 46-85 years). The mean diameter of the AAA was 57.9 mm (range, 40-70 mm). The mean diameter of the common iliac artery was 14.5 mm (range, 10-19 mm). The mean body mass index was 29.2 kg/m² (range, 22-40 kg/m²). The mean follow-up was 12 months (range, 6-24 months).

Conclusions: The safety and effectiveness of the GORE EXCLUDER Conformable AAA Endoprosthesis system has been demonstrated with 98.5% freedom from primary efficacy end points at 1 year and 100% freedom from primary safety end points assessed through 30 days. (J Vasc Surg 2022;76:951-9.)
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

<table>
<thead>
<tr>
<th>Neck Angulation</th>
<th>Neck Length</th>
<th>GORE® EXCLUDER® Conformable AAA Endoprosthesis/CLINICAL DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 60°</td>
<td>> 15 mm</td>
<td>Inside IFU</td>
</tr>
<tr>
<td></td>
<td>10-15 mm</td>
<td>Inside IFU</td>
</tr>
<tr>
<td></td>
<td>5-10 mm</td>
<td>Challenging anatomy</td>
</tr>
<tr>
<td></td>
<td>< 5 mm</td>
<td>Extreme anatomy</td>
</tr>
<tr>
<td>60-90°</td>
<td>> 15 mm</td>
<td>Inside IFU</td>
</tr>
<tr>
<td></td>
<td>10-15 mm</td>
<td>Challenging anatomy</td>
</tr>
<tr>
<td></td>
<td>5-10 mm</td>
<td>Extreme anatomy</td>
</tr>
<tr>
<td></td>
<td>< 5 mm</td>
<td></td>
</tr>
<tr>
<td>> 90°</td>
<td>> 15 mm</td>
<td>Challenging anatomy</td>
</tr>
<tr>
<td></td>
<td>10-15 mm</td>
<td>Extreme anatomy</td>
</tr>
<tr>
<td></td>
<td>5-10 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 5 mm</td>
<td></td>
</tr>
</tbody>
</table>
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

GORE® EXCLUDER® Conformable AAA Endoprosthesis/ CLINICAL DATA

<table>
<thead>
<tr>
<th>Neck Angulation</th>
<th>156 patients</th>
<th>Neck Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 60°</td>
<td>83</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>60-90°</td>
<td>34</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>> 90°</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Courtesy of Dr. Al Batti
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

EXCeL Registry

<table>
<thead>
<tr>
<th>EXCeL Registry (1-2 years)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients</td>
<td>57</td>
</tr>
<tr>
<td>New Type I or III endoleak</td>
<td>0</td>
</tr>
<tr>
<td>Other endoleaks</td>
<td>12</td>
</tr>
<tr>
<td>Migration</td>
<td>0</td>
</tr>
<tr>
<td>Secondary interventions</td>
<td>1*</td>
</tr>
<tr>
<td>Death</td>
<td>4**</td>
</tr>
</tbody>
</table>

* Coiling IMA for Type II endoleak
** 2 Cause unknown, 2 respiratory failure (1 COVID)

Courtesy of Dr. Al Batti
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

EXCeL Registry (2-3 years)

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Type I or III endoleak</td>
<td>0</td>
</tr>
<tr>
<td>Other endoleaks</td>
<td>4</td>
</tr>
<tr>
<td>Migration</td>
<td>0</td>
</tr>
<tr>
<td>Secundary interventions</td>
<td>0</td>
</tr>
<tr>
<td>Death</td>
<td>3*</td>
</tr>
</tbody>
</table>

* 3 respiratory failure (1 COVID)

Courtesy of Dr. Al Batti
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

GORE® EXCLUDER® Conformable AAA Endoprosthesis/
CLINICAL CASE
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

GORE® EXCLUDER® Conformable AAA Endoprosthesis/CLINICAL CASE

![Image of medical scans]
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

GORE® EXCLUDER® Conformable AAA Endoprosthesis/CLINICAL CASE
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

GORE® EXCLUDER® Conformable AAA Endoprosthesis/CLINICAL CASE

Excluder® Conformable adapts to the anatomy doesn´t change it
TAKE HOME MESSAGE

• Good sealing zone is mandatory for the durability

• Good planning (Sizing/Grafting) is essential

- PRECISE DEPLOYMENT:
 - PREDICTIBLE
 - CONTROLLED (Angulation mechanism)
 * Optimize the placement of the stent graft
 * Maximize seal length
 * Improve the wall apposition

- More conformable endografts seem to be more harmonic with anatomy

- Looking forward for long Follow up outcomes (BSET-CLEVAR)
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

THANK YOU!!!!
Does conformability have an impact on the outcomes of endovascular repair of AAA with angulated infrarenal necks?

Angiology and Vascular Surgery Department University Hospital A Coruña (CHUAC) A Coruña (Spain)