The Münster strategy
to avoid spinal cord ischemia during F/BEVAR

M. J. Austermann
Director
Clinic for Vascular Surgery and Phlebology
St. Franziskus Hospital Münster
PD Dr. med. Martin J. Austermann
Director Clinic for Vascular Surgery
St. Franziskus Hospital Münster

Disclosure
Speaker name:

I have the following potential conflicts of interest to report:

- [x] Receipt of grants/research support
- [] Receipt of honoraria and travel support
- [] Participation in a company-sponsored speaker bureau
- [] Employment in industry
- [] Shareholder in a healthcare company
- [] Owner of a healthcare company
- [] I do not have any potential conflict of interest
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

Fenestrations

Branches
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

CMD-FEVAR for TAAA:

CMD-FEVAR in Dissection:
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

CMD-BEVAR:

T-Branch:
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

Arch-Branch-Device:
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

The spinal perfusion
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

Frequency of SCI before 2014:

<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>N=</th>
<th>30-d-SCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Münster 2014</td>
<td>2010-2014</td>
<td>136</td>
<td>16.2%</td>
</tr>
<tr>
<td>Reilly 2012</td>
<td>2006-2012</td>
<td>81</td>
<td>7.8%</td>
</tr>
<tr>
<td>Greenberg 2009</td>
<td>2001-2006</td>
<td>189</td>
<td>7.4%</td>
</tr>
<tr>
<td>Verhoeven 2009</td>
<td>2009-2009</td>
<td>30</td>
<td>16.7%</td>
</tr>
<tr>
<td>Haulon 2012</td>
<td>2006-2012</td>
<td>89</td>
<td>7.8%</td>
</tr>
<tr>
<td>Greenberg 2008</td>
<td>2001-2006</td>
<td>189</td>
<td>7.4%</td>
</tr>
<tr>
<td>Reilly 2009 review</td>
<td>2006-2013</td>
<td>61</td>
<td>14.7%</td>
</tr>
<tr>
<td>Reilly 2014</td>
<td>2006-2012</td>
<td>287</td>
<td>14.9%</td>
</tr>
</tbody>
</table>

30-d-SCI up to 16.7%
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

St. Franziskus Hospital Münster experience 2010 - TAAA

SCI and 30d-Mortality after BEVAR/FEVAR for TAAA
Challenge: SCI/paraparesis

Risk factor for SCI during endovascular TAAA-repair:

- Amount of covered aorta.
- Circulatory instability (blood transfusion, need of catecholamines)

Prophylactic spinal cord drainage without impact on SCI, but 6% complications!

Fig 2. Aortic coverage in percentage in patients treated endovascularly for thoracoabdominal aortic aneurysms (TAAAs). The aorta is normalized in percentage from the subclavian artery (100% coverage) to the aortic bifurcation (0% coverage). Each bar represents the aortic coverage of each patient (green, no spinal cord ischemia [SCI]; red, SCI) correlated also to the Crawford classification of the respective aneurysm.
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

Solution 1: Staging

Thoraco-abdominal Typ B Dissection with false lumen aneurysm
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

Solution 1: Staging

Staged repair (Open surgery)

Etz et al. J Thorac Cardiovasc Surg 2010;139:1464-72
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

Solution 1: Staging

Staged repair (Endo repair)

Editor's Choice — Temporary Aneurysm Sac Perfusion as an Adjunct for Prevention of Spinal Cord Ischemia After Branched Endovascular Repair of Thoracoabdominal Aneurysms (CME)

Department of Surgery, Vascular and Endovascular Surgery, University Hospital, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany

Table 5. Neurological complications.

<table>
<thead>
<tr>
<th>Neurological complications</th>
<th>Non-TASP (n = 43)</th>
<th>TASP (all patients) (n = 40)</th>
<th>(p^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute cerebrovascular events</td>
<td>0 (0)</td>
<td>3 (1)</td>
<td></td>
</tr>
<tr>
<td>Paraesthesia</td>
<td>1 (2)</td>
<td>5 (13)</td>
<td></td>
</tr>
<tr>
<td>Temporary paraparesis (b)</td>
<td>1 (2)</td>
<td>5 (13)</td>
<td>NS</td>
</tr>
<tr>
<td>Paraplegia (day 30 or discharge) (b)</td>
<td>9 (21)</td>
<td>2 (5)</td>
<td>.03</td>
</tr>
<tr>
<td>Subgroup of aneurysm type I–III (n = 24)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraplegia (d 30 or discharge) (b)</td>
<td>7 (29)</td>
<td>1 (3)</td>
<td>.01</td>
</tr>
</tbody>
</table>

Note. Values are \(n (%) \) unless otherwise indicated. TASP = temporary aneurysm sac perfusion; NS = all in comparison to the non-TASP group. \(p^a \) = comparison to the non-TASP group.

Muscle strength 0–2 according to the modified Tarlov scale.
A systematic review and meta-analysis of the occurrence of spinal cord ischemia after endovascular repair of thoracoabdominal aortic aneurysms

The Münster strategy to avoid spinal cord ischemia during F/BEVAR

Metaanalysis 27 Studies 2333 patients:

Lower pooled SCI rate after staged (20 studies) than after non staged (8 studies) approach (9% vs 18%, p=0.02)

Method of staging, timing > or < one month without effect.

30d Mortality similar staged vs non-staged 6% vs 9%

Interstage mortality reported in 9 studies pooled estimate rate 1.6%

Symptomatic vs prophylactic CSFD with similar pooled SCI rates (10% vs 10%, p=0.99)
Solution 2: Early reperfusion of the iliacs

Place the Graft

Close the groins

Attach the target vessels to the cuffs

Reduction of SCI below 2%.
Solution 2: Early reperfusion of the iliacs
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

Solution 3: Communication

Operator – Anästhesiologiest – Intensiv care unit

About:

Amount of aortic coverage
Blood loss
Special risks: Occlusion of the hypogastric arteries
Subclavian occlusion
Amount of intercostals

Post-operative visit of the operation on the ICU!
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

Solution 4: Standardized perioperative management

For 48h:

Middle RR > 80mmHg, HB > 10 g/dl monitored on ICU

Bedrest.

Circulatory stability:

Avoid blood loss or substitute.
Ideal volume therapy.

Avoid catecholamines if possible.

Spinal cord fluid drainage (CSFD) only on demand.
OPEN REPAIR

<table>
<thead>
<tr>
<th>Authors, year</th>
<th>Study</th>
<th>Type of monitor</th>
<th>CSFD benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crawford et al, 1991</td>
<td>RCT*</td>
<td>50ml CSF</td>
<td>none</td>
</tr>
<tr>
<td>Svennson et al, 1998</td>
<td>RCT</td>
<td>Volume-based</td>
<td>Favors CSFD</td>
</tr>
<tr>
<td>Coselli et al, 2002</td>
<td>RCT</td>
<td>Pressure-based</td>
<td>Favors CSFD</td>
</tr>
</tbody>
</table>

*Randomised controlled trial

- **1177 papers about CSFD during open TAAA repair:**
 CSF drainage does offer a neuroprotective benefit
 (CSFD <10 mmHg)

CSFD-related adverse events:
- Intracranial hematoma: 3-11%
- Postdural puncture headache: 10%

Youngblood et al, J Thorac Cardiovasc Surg 2013;146:166-71
CSF-drainage (CSFD)?

ENDOVASCULAR REPAIR

<table>
<thead>
<tr>
<th>Authors, year</th>
<th>Journal</th>
<th>Study</th>
<th>Preoperative CSFD benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ullery et al, 2011</td>
<td>Sem Cardiothor Vasc Anesth</td>
<td>Meta-analysis</td>
<td>none</td>
</tr>
<tr>
<td>Wong et al, 2013</td>
<td>J Vasc Surg</td>
<td>Meta-analysis</td>
<td>none</td>
</tr>
<tr>
<td>Zipfel et al, 2013</td>
<td>Ann Thorac Surg</td>
<td>Retrospective cohort analysis</td>
<td>none</td>
</tr>
<tr>
<td>Bisdas et al, 2015</td>
<td>J Vasc Surg</td>
<td>Retrospective cohort analysis</td>
<td>none</td>
</tr>
<tr>
<td>Spanos et al, 2019</td>
<td>J Vasc Surg</td>
<td>Meta-analysis</td>
<td>none</td>
</tr>
<tr>
<td>Kitpanit et al, 2021</td>
<td>Circulation</td>
<td>Propensity-score matched</td>
<td>none</td>
</tr>
<tr>
<td>Greenberg et al, 2008</td>
<td>Circulation</td>
<td>Propensity-score matched</td>
<td>87%</td>
</tr>
<tr>
<td>Sobel et al, 2013</td>
<td>J Vasc Surg</td>
<td>Retrospective cohort analysis</td>
<td>79%</td>
</tr>
<tr>
<td>Bisdas et al, 2015</td>
<td>J Vasc Surg</td>
<td>Retrospective cohort analysis</td>
<td>57%</td>
</tr>
<tr>
<td>Spanos et al, 2019</td>
<td>J Vasc Surg</td>
<td>Retrospective cohort analysis</td>
<td>28%</td>
</tr>
</tbody>
</table>

SFH – Münster:

Since 2015 **no** prophylactic CSF-drainage.
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

Prophylactic CSFD 78 pt (73,6%), No CSFD 28 pt (26,4%)

SCI 4 pt with CSFD (2 permanent, 2 paraparesis)

Extent and blood loss independent risk factors for SCI.

6 pt (7,6%) with major CSFD complications (subarachnoidal bleeding 2,6%, spinal hematoma 2,6%, Cerebellar hemorrhage 1,3%, Laminektomy 1,3%)

20 pt (25,6%) with minor CSFD complications

Conclusions: The incidence of SCI after F/B-EVAR with selective CSFD was low, and risk factors for SCI were greater with extent of thoracic aortic coverage and intraoperative blood loss. However, the incidence of major CSFD-related complications exceeded the incidence of SCI, and CSFD significantly increased both intensive care unit and total hospital length of stay. Therefore, routine prophylactic CSFD may not be justified, and a prospective randomized trial of CSFD in patients undergoing F/B-EVAR seems appropriate.
The Münster strategy to avoid spinal cord ischemia during F/BEVAR

Multicenter Study to Evaluate Endovascular Repair of Extent I–III Thoracoabdominal Aneurysms Without Prophylactic Cerebrospinal Fluid Drainage

Giuliana B Marcondes 1, Nolan C Cirillo-Penn 2, Emanuel R Tenorio 1 2, Donald J Adam 3, Carlos Timaran 4, Martin J Austermann 6, Luca Bertoglio 6, Tomasz Jakimowicz 7, Michele Piazza 8, Maciej T Juszczak 3, Carla K Scott 4, Bärbel Berekoven 8, Roberto Chiesa 6, Guilherme B B Lima 1, Katarzyna JAMA 7, Francesco Squizzato 8, Martin Claridge 3, Bernardo C Mendes 2, Gustavo S Oderich 1,
Trans-Atlantic Aortic Research Consortium Investigators

N=541

30d Mortality 3%

SCI 8%
Paraparesis 4% Paraplegia 4%, permanent 2%
Extent 1 and 2: 12% SCI, Extent 3: 5% SCI

Rescue treatment incl hypertension and CSFD improved symptoms in 73%

Risc factors for SCI:
Length of covered aorta, impaired collateral network, Perioperativ hypotension.
Lessons learned: St. Franziskus Hospital Münster

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Long term iliac Occlusion</td>
<td>Longer iliac Occlusion Proph. CSFD 50%</td>
<td>Short iliac Occlusion No proph. CFSD</td>
</tr>
<tr>
<td>30 d mortality</td>
<td>4 (2,9%)</td>
<td>15 (2,8 %)</td>
</tr>
<tr>
<td>SCI</td>
<td>22 (16,2%)</td>
<td>30 (5,7%)</td>
</tr>
<tr>
<td>Permanent paraplegiyn</td>
<td>11 (8 %)</td>
<td>14 (2,6 %)</td>
</tr>
</tbody>
</table>
Conclusion:

Staging...

Early restauration of the iliac perfusion...

Communication Operator-Anesthesiology...

Standardized perioperative management...

....reduce the risk for SCI below 3%
Clinic for Vascular Surgery and Phlebology
Institute for Vascular Research
Director: PD Dr. M. J. Austermann

St. Franziskus Hospital Münster
Hohenzollernring 70
48145 Münster

master class
endoVASCULAR and OPEN

SAVE THE DATE
13.– 14. Mai 2024 | Münster
Thank you!
The Münster strategy
to avoid spinal cord ischemia during F/BEVAR

M. J. Austermann
Director
Clinic for Vascular Surgery and Phlebology
St. Franziskus Hospital Münster